MATH 512, FALL 14 COMBINATORIAL SET THEORY WEEK 8

 $j(\mathbb{M})/G := \{p \in j(\mathbb{M}) \mid \pi(p) \in G\}, \text{ where } \pi : j(\mathbb{M}) \to \mathbb{M} \text{ is the projection.}$

Definition 1. Let $\mathbb{Q}^* := \{q \in j(\mathbb{Q}) \mid q \upharpoonright \kappa = \emptyset\}$. I.e. conditions are q with $\operatorname{dom}(q) \subset j(\kappa) \setminus \kappa, |\operatorname{dom}(q)| < j(\kappa)$, and for all $\alpha \in \operatorname{dom}(q), 1_{Add(\omega,\alpha)} \Vdash q(\alpha) \in Add(\omega_1, 1)$. We have that $r \leq_{\mathbb{Q}^*} q$ iff

- (1) $\operatorname{dom}(r) \supset \operatorname{dom}(q)$;
- (2) for all $\alpha \in \operatorname{dom}(q)$, $1_{Add(\omega,\alpha)} \Vdash r(\alpha) \leq_{Add(\omega_1,1)} q(\alpha)$.

Lemma 2. In V[G], $j(\mathbb{M})/G$ is a projection of $\mathbb{P}^* \times \mathbb{Q}^*$.

Proof. Suppose that $H \times K$ is a $\mathbb{P}^* \times \mathbb{Q}^*$ -generic over V[G]. We have to show that in V[G][H][K] there is a generic object for $j(\mathbb{M})/G$ over V[G].

In V[G] define $E = \{(p',q') \in j(\mathbb{M})/G \mid (\exists (p,q) \in j(\mathbb{M})/G)(p,q) \leq (p',q'), p \upharpoonright j(\kappa) \setminus \kappa \in H, q \upharpoonright j(\kappa) \setminus \kappa \in H\}$. We claim that E is $j(\mathbb{M})/G$ -generic over V[G]. It is straightforward to check that this is a filter. For genericity, suppose that D is a dense subset of $j(\mathbb{M})/G$. Then let $D^* := \{(p,q) \in \mathbb{P}^* \times \mathbb{Q}^* \mid (\exists (p',q') \in D)(p' \upharpoonright j(\kappa) \setminus \kappa = p,q' \upharpoonright j(\kappa) \setminus \kappa = q)\}$ is a dense subset of $\mathbb{P}^* \times \mathbb{Q}^*$.

Let $(p,q) \in D^* \cap H \times K$. Let $(p',q') \in D$ witness that $(p,q) \in D$. But then by definition, $(p',q') \in E$.

Lemma 3. In V[G], \mathbb{Q}^* is ω_1 -closed, and \mathbb{P}^* is ω_1 -Knaster.

Proof. Suppose that $\langle q_n \mid n < \omega \rangle$ is a decreasing sequence of conditions in \mathbb{Q}^* . We define a lower bound q, by setting $\operatorname{dom}(q) = \bigcup_n \operatorname{dom}(q_n)$. For $\alpha \in \operatorname{dom}(q)$, let $k < \omega$ be such that $\alpha \in \operatorname{dom}(q_k)$. Then for all $n \geq k, \alpha \in \operatorname{dom}(q_n)$. Moreover, since for all $k \geq n_1 < n_2$, we have that $1_{Add(\omega,\alpha)} \Vdash q_{n_2}(\alpha) \leq q_{n_1}(\alpha)$, we have that $1_{Add(\omega,\alpha)} \Vdash ``(q_n(\alpha) \mid n \geq k)$ is a decreasing sequence in $Add(\omega_1, 1)$ ". Therefore, there is some name σ , such that $1_{Add(\omega,\alpha)} \Vdash ``(\forall n \geq k)\sigma \leq_{Add(\omega_1,1)} q_n(\alpha)^{-1}$. Set $q(\alpha) = \sigma$. Then $q \leq_{\mathbb{Q}^*} q_n$ for all n, and so \mathbb{Q}^* is ω_1 -closed.

The second part of the lemma follows by a Δ -system argument.

So, we know that T has an unbounded branch in V[G][H][K]. Next we will use some branch preservation lemmas to show that forcing with $\mathbb{P}^* \times \mathbb{Q}^*$ cannot add new branches, and so T must already have a branch in V[G]. We use the following lemma. The proof is left as an exercise.

¹This is due to the fact that if $p \Vdash (\exists x)\phi(x)$, then there is a name a, such that $p \Vdash \phi(a)$.

Lemma 4. (The product lemma) Suppose that \mathbb{P}, \mathbb{Q} are two posets in a ground model V'. Suppose that H^* is $\mathbb{P} \times \mathbb{Q}$ -generic over V'. Let $H = \{p \in \mathbb{P} \mid (\exists q \in \mathbb{Q})(p,q) \in H^*\}$ and $K = \{p \in \mathbb{Q} \mid (\exists p \in \mathbb{P})(p,q) \in H^*\}$. Then $V'[H^*] = V'[H][K] = V'[K][H]$.

Conversely, if H is \mathbb{P} -generic over V' and K is \mathbb{Q} -generic over V'[H], then H is \mathbb{P} -generic over V'[K], and again V'[H][K] = V'[K][H].

Then by the product lemma, V[G][H][K] = V[G][K][H].

Proposition 5. T has an unbounded branch in V[G][K].

Proof. In V[G][K], T is a tree of height ω_1 . Since \mathbb{P}^* is ω_1 -Knaster, it cannot add new branches.

Proposition 6. T has an unbounded branch in V[G].

Proof. In V[G], T is an \aleph_2 -tree, and \mathbb{Q}^* is ω_1 -closed. Moreover, $2^{\omega} = \omega_2$. So, by Silver's theorem \mathbb{Q}^* cannot have added a new branch.

Corollary 7. The tree property at \aleph_2 holds in V[G].

It turns out that the tree property at \aleph_2 is equiconsistent with the existence of a weak compact cardinal:

Theorem 8. (Silver) Suppose in V, the tree property at \aleph_2 holds. Then in L, \aleph_2^V is weakly compact.

Below we summarize further results, motivated by Mitchell's theorem:

- (1) (Abraham) Starting from a supercompact and a weakly compact, one can get the tree property simultaneously at \aleph_2 and \aleph_3 .
- (2) (Cummings and Foreman) Starting from ω many supercompacts, one can get the tree property simultaneously at \aleph_n for all $2 \le n < \omega$.
- (3) (Neeman) Starting from ω many supercompacts, one can get the tree property simultaneously at \aleph_n for all $2 \le n < \omega$ and at $\aleph_{\omega+1}$.
- (4) (Friedman-Halilovic /Gitik) From some (not too) large cardinals, one can get the tree property at $\aleph_{\omega+2}$, \aleph_{ω} strong limit.

What about combining $\aleph_{\omega+1}$ and $\aleph_{\omega+2}$? The difficulty is that in order to get the tree property at $\aleph_{\omega+2}$ when \aleph_{ω} is strong limit, we have to have $2^{\aleph_{\omega}} > \aleph_{\omega+1}$, i.e. the negation of the *singular cardinal hypothesis* at \aleph_{ω} . And constructions that do that tend to be fairly complicated. The following remains open:

- (1) Is it consistent to have the tree property at $\aleph_{\omega+1}$ together with not SCH at $\aleph_{\omega+1}$? (For \aleph_{ω^2} the answer is yes.)
- (2) Is it consistent to have the tree property simultaneously at κ^+ and κ^{++} when κ is strong limit singular?
- (3) Is it consistent to have the tree property simultaneously at $\aleph_{\omega+1}$ and $\aleph_{\omega+2}$ when \aleph_{ω} is strong limit?