MATH 512, FALL 14 COMBINATORIAL SET THEORY WEEK 8

$j(\mathbb{M}) / G:=\{p \in j(\mathbb{M}) \mid \pi(p) \in G\}$, where $\pi: j(\mathbb{M}) \rightarrow \mathbb{M}$ is the projection.
Definition 1. Let $\mathbb{Q}^{*}:=\{q \in j(\mathbb{Q}) \mid q \upharpoonright \kappa=\emptyset\}$. I.e. conditions are q with $\operatorname{dom}(q) \subset j(\kappa) \backslash \kappa,|\operatorname{dom}(q)|<j(\kappa)$, and for all $\alpha \in \operatorname{dom}(q), 1_{\text {Add }(\omega, \alpha)} \Vdash$ $q(\alpha) \in \operatorname{Add}\left(\omega_{1}, 1\right)$. We have that $r \leq_{\mathbb{Q}^{*}} q$ iff
(1) $\operatorname{dom}(r) \supset \operatorname{dom}(q)$;
(2) for all $\alpha \in \operatorname{dom}(q), 1_{\text {Add }(\omega, \alpha)} \Vdash r(\alpha) \leq_{\text {Add }\left(\omega_{1}, 1\right)} q(\alpha)$.

Lemma 2. In $V[G], j(\mathbb{M}) / G$ is a projection of $\mathbb{P}^{*} \times \mathbb{Q}^{*}$.
Proof. Suppose that $H \times K$ is a $\mathbb{P}^{*} \times \mathbb{Q}^{*}$-generic over $V[G]$. We have to show that in $V[G][H][K]$ there is a generic object for $j(\mathbb{M}) / G$ over $V[G]$.

In $V[G]$ define $E=\left\{\left(p^{\prime}, q^{\prime}\right) \in j(\mathbb{M}) / G \mid(\exists(p, q) \in j(\mathbb{M}) / G)(p, q) \leq\right.$ $\left.\left(p^{\prime}, q^{\prime}\right), p \upharpoonright j(\kappa) \backslash \kappa \in H, q \upharpoonright j(\kappa) \backslash \kappa \in H\right\}$. We claim that E is $j(\mathbb{M}) / G$ generic over $V[G]$. It is straightforward to check that this is a filter. For genericity, suppose that D is a dense subset of $j(\mathbb{M}) / G$. Then let $D^{*}:=$ $\left\{(p, q) \in \mathbb{P}^{*} \times \mathbb{Q}^{*} \mid\left(\exists\left(p^{\prime}, q^{\prime}\right) \in D\right)\left(p^{\prime} \upharpoonright j(\kappa) \backslash \kappa=p, q^{\prime} \upharpoonright j(\kappa) \backslash \kappa=q\right)\right\}$ is a dense subset of $\mathbb{P}^{*} \times \mathbb{Q}^{*}$.

Let $(p, q) \in D^{*} \cap H \times K$. Let $\left(p^{\prime}, q^{\prime}\right) \in D$ witness that $(p, q) \in D$. But then by definition, $\left(p^{\prime}, q^{\prime}\right) \in E$.

Lemma 3. In $V[G], \mathbb{Q}^{*}$ is ω_{1}-closed, and \mathbb{P}^{*} is ω_{1}-Knaster.
Proof. Suppose that $\left\langle q_{n} \mid n<\omega\right\rangle$ is a decreasing sequence of conditions in \mathbb{Q}^{*}. We define a lower bound q, by $\operatorname{setting} \operatorname{dom}(q)=\cup_{n} \operatorname{dom}\left(q_{n}\right)$. For $\alpha \in \operatorname{dom}(q)$, let $k<\omega$ be such that $\alpha \in \operatorname{dom}\left(q_{k}\right)$. Then for all $n \geq k, \alpha \in \operatorname{dom}\left(q_{n}\right)$. Moreover, since for all $k \geq n_{1}<n_{2}$, we have that $1_{\text {Add }(\omega, \alpha)} \Vdash q_{n_{2}}(\alpha) \leq q_{n_{1}}(\alpha)$, we have that $1_{\operatorname{Add}(\omega, \alpha)} \Vdash "\left\langle q_{n}(\alpha) \mid n \geq k\right\rangle$ is a decreasing sequence in $\operatorname{Add}\left(\omega_{1}, 1\right)$ ". Therefore, there is some name σ, such that $1_{\text {Add }(\omega, \alpha)} \Vdash "(\forall n \geq k) \sigma \leq_{\operatorname{Add}\left(\omega_{1}, 1\right)} q_{n}(\alpha)^{1}$. Set $q(\alpha)=\sigma$. Then $q \leq_{\mathbb{Q}^{*}} q_{n}$ for all n, and so \mathbb{Q}^{*} is ω_{1}-closed.

The second part of the lemma follows by a Δ-system argument.
So, we know that T has an unbounded branch in $V[G][H][K]$. Next we will use some branch preservation lemmas to show that forcing with $\mathbb{P}^{*} \times \mathbb{Q}^{*}$ cannot add new branches, and so T must already have a branch in $V[G]$. We use the following lemma. The proof is left as an exercise.

[^0]Lemma 4. (The product lemma) Suppose that \mathbb{P}, \mathbb{Q} are two posets in a ground model V^{\prime}. Suppose that H^{*} is $\mathbb{P} \times \mathbb{Q}$-generic over V^{\prime}. Let $H=\{p \in$ $\left.\mathbb{P} \mid(\exists q \in \mathbb{Q})(p, q) \in H^{*}\right\}$ and $K=\left\{p \in \mathbb{Q} \mid(\exists p \in \mathbb{P})(p, q) \in H^{*}\right\}$. Then $V^{\prime}\left[H^{*}\right]=V^{\prime}[H][K]=V^{\prime}[K][H]$.

Conversely, if H is \mathbb{P}-generic over V^{\prime} and K is \mathbb{Q}-generic over $V^{\prime}[H]$, then H is \mathbb{P}-generic over $V^{\prime}[K]$, and again $V^{\prime}[H][K]=V^{\prime}[K][H]$.

Then by the product lemma, $V[G][H][K]=V[G][K][H]$.
Proposition 5. T has an unbounded branch in $V[G][K]$.
Proof. In $V[G][K], T$ is a tree of height ω_{1}. Since \mathbb{P}^{*} is ω_{1}-Knaster, it cannot add new branches.

Proposition 6. T has an unbounded branch in $V[G]$.
Proof. In $V[G], T$ is an \aleph_{2}-tree, and \mathbb{Q}^{*} is ω_{1}-closed. Moreover, $2^{\omega}=\omega_{2}$. So, by Silver's theorem \mathbb{Q}^{*} cannot have added a new branch.

Corollary 7. The tree property at \aleph_{2} holds in $V[G]$.
It turns out that the tree property at \aleph_{2} is equiconsistent with the existence of a weak compact cardinal:

Theorem 8. (Silver) Suppose in V, the tree property at \aleph_{2} holds. Then in L, \aleph_{2}^{V} is weakly compact.

Below we summarize further results, motivated by Mitchell's theorem:
(1) (Abraham) Starting from a supercompact and a weakly compact, one can get the tree property simultaneously at \aleph_{2} and \aleph_{3}.
(2) (Cummings and Foreman) Starting from ω many supercompacts, one can get the tree property simultaneously at \aleph_{n} for all $2 \leq n<\omega$.
(3) (Neeman) Starting from ω many supercompacts, one can get the tree property simultaneously at \aleph_{n} for all $2 \leq n<\omega$ and at $\aleph_{\omega+1}$.
(4) (Friedman-Halilovic /Gitik) From some (not too) large cardinals, one can get the tree property at $\aleph_{\omega+2}$, \aleph_{ω} strong limit.
What about combining $\aleph_{\omega+1}$ and $\aleph_{\omega+2}$? The difficulty is that in order to get the tree property at $\aleph_{\omega+2}$ when \aleph_{ω} is strong limit, we have to have $2^{\aleph_{\omega}}>\aleph_{\omega+1}$, i.e. the negation of the singular cardinal hypothesis at \aleph_{ω}. And constructions that do that tend to be fairly complicated. The following remains open:
(1) Is it consistent to have the tree property at $\aleph_{\omega+1}$ together with not SCH at $\aleph_{\omega+1}$? (For $\aleph_{\omega^{2}}$ the answer is yes.)
(2) Is it consistent to have the tree property simultaneously at κ^{+}and κ^{++}when κ is strong limit singular?
(3) Is it consistent to have the tree property simultaneously at $\aleph_{\omega+1}$ and $\aleph_{\omega+2}$ when \aleph_{ω} is strong limit?

[^0]: ${ }^{1}$ This is due to the fact that if $p \Vdash(\exists x) \phi(x)$, then there is a name a, such that $p \Vdash \phi(a)$.

